
Filter-based Stabilization of Spectral Element MethodsP. F. Fischer,1 J. S. Mullen2August 4, 1999AbstractWe present a simple �ltering procedure for stabilizing the spectral element method (SEM)for the unsteady advection-di�usion and Navier-Stokes equations. A number of example ap-plications are presented, along with basic analysis for the advection-di�usion case.1. IntroductionWe consider spectral element solution of the incompressible Navier-Stokes equations in lRd,@u@t + u � ru = �rp + 1Rer2u in 
; r � u = 0 in 
; (1)with prescribed boundary and initial conditions for the velocity, u. Here, p is the pressure andRe = UL� the Reynolds number based on characteristic velocity and length scales.A well-known di�culty in numerical treatment of (1) is the enforcement of the divergence-freeconstraint on u, particularly at high Reynolds numbers. The lPN � lPN�2 spectral element method(SEM) introduced in [2, 9] addresses this problem through the use of compatible trial and testspaces for velocity and pressure that are free of spurious modes. The method attains exponentialconvergence in space and second- or third-order accuracy in time. Despite these advantages,we have in the past encountered stability problems that have mandated very �ne resolution forapplications at moderate to high Reynolds numbers (103{104). Here, we demonstrate a simple�ltering procedure that largely cures the instability and allows one to recover the full advantagesof the SEM.2. Discretization and FilterThe �lter is applied at the end of each step of the Navier-Stokes time integration, which isdescribed in detail in [7]. The temporal discretization is based on the high-order operator-splittingmethods developed in [10]. The convective term is expressed as a material derivative, which isdiscretized using a stable second-order BDF scheme, leading to a linear symmetric Stokes problemto be solved implicitly at each step. The subintegration of the convection term permits timestepsizes, �t, corresponding to convective CFL numbers of 2{5, thus signi�cantly reducing the numberof (expensive) Stokes solves.The Stokes discretization is based on the variational form Find (u; p) 2 XN � Y N such that1Re (ru;rv)GL + 32�t(u;v)GL � (p;r � v)G = (f ;v)GL; (r � u; q)G = 0; (2)1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.2Division of Applied Mathematics, Brown University, Providence, RI 02912.1



8 (v; q) 2 XN � Y N . The inner products (:; :)GL and (:; :)G refer to the Gauss-Lobatto-Legendre(GL) and Gauss-Legendre (G) quadratures associated with the spaces XN := [lPdN (
k)jKk=1\H10 ]dand Y N := lPdN (
k), respectively. Here, lPdN (
k)jKk=1 is the space of tensor-product polynomials ofdegree � N on each of K nonoverlapping elements, 
k, whose union composes 
, and H10 is theusual Sobolev space of square integrable functions that vanish on the boundary and whose �rstderivative is also square integrable. For d = 2, a typical element in XN is writtenu(xk(r; s))��
k = NXi=0 NXj=0ukijhNi (r)hNj (s) ; (3)where ukij is the nodal basis coe�cient; hNi 2 lP1N is the Lagrange polynomial based on the GLquadrature points, f�Nj gNj=0; and xk(r; s) is the coordinate mapping from the reference domain,
̂ := [�1; 1]d, to 
k. Function continuity (u 2 H1) is enforced by ensuring that nodal valueson element boundaries coincide with those on adjacent elements. For Y N , a tensor-product formsimilar to (3) is used, save that the interpolants are based on the G points since interelementcontinuity is not enforced.Insertion of the SEM basis into (2) yields a discrete Stokes system to be solved at each step:H ~u�DT pn = B fn; D ~u = 0; un = F�~u;where we have introduced the stabilizing �lter, F�, to be described below. Here, H = 1ReA+ 1�tBis the discrete equivalent of the Helmholtz operator, ( � 1Rer2 + 1�t ); �A is the discrete Laplacian;B is the mass matrix associated with the velocity mesh; D is the discrete gradient operator, andfn accounts for the explicit treatment of the nonlinear terms. The �lter, F�, is applied on anelement-by-element basis once the velocity-pressure pair (~u; pn) has been computed.The �lter is constructed as follows. Let Imn be the operator that interpolates a polynomialof degree n onto f�mi g, and let �N�1 := INN�1IN�1N be a projector from lP1N to lP1N�1 on [�1; 1].Then the one-dimensional �lter iŝF� := ��N�1 + (1� �)INN :In higher space dimensions, one simply uses the tensor-product form, F� := F̂� 
 : : :
 F̂�. Theinterpolation-based procedure ensures that interelement continuity is preserved; and, because thenodal basis points �Ni interlace �N�1i , F� will tend to dampen high-frequency oscillations. More-over, spectral convergence is not compromised, because the interpolation error will go to zero asN �!1 for smooth u. We note that � = 1 corresponds to a full projection onto lPN�1, e�ectivelyyielding a sharp cuto� in modal space, whereas 0 < � < 1 yields a smoother, preferable decay[3, 6, 8].3. ApplicationsWe have used the �ltering procedure on a number of high Reynolds number applications wherethe standard lPN � lPN�2 method would not converge. These have included the regularized drivencavity at Re = 5000, transitional channel 
ow at Reh = 8000, and hairpin vortex formation in aboundary layer at Re� = 1200. The examples below demonstrate the bene�ts of the �lter on somewell-known test problems.Example 1. Figure 1 shows results for the shear layer roll-up problem studied in [1, 4]. Doubly-periodic boundary conditions are applied on 
 := [0; 1]2, with initial conditionsu = � tanh(�(y � 0:25)) for y � 0:5tanh(�(0:75� y)) for y > 0:5 ; v = 0:05 sin(2�x) :2
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Figure 1: Vorticity contours for di�erent (K;N) pairings: (a{d) \thick" shear layer, � = 30, Re = 105,contours from -70 to 70 by 140/15; (e{f) \thin" shear layer, � = 100, Re = 40; 000, contours from -36 to36 by 72/13 (cf. Fig. 3c in [4]).Each case consists of a 16� 16 array of elements, save for (e), which is 32� 32. The time step sizeis �t = :002 in all cases, corresponding to CFL numbers in the range of 1 to 5. Without �ltering,we are unable to simulate this problem at any reasonable resolution. In (a), we see the results justprior to blow up for the un�ltered case with N = 16, corresponding to an n�n grid with n = 256.Un�ltered results for N = 8 (n = 128) and N = 32 (n = 512) are similar. Filtering with � = 0:3yields dramatic improvement for n = 256 (b) and n = 128 (d). Though full projection (� = 1) isalso stable, it is clear by comparing (c) and (d) that partial �ltering (� < 1) is preferable. Finally,(e) and (f) correspond to the di�cult \thin" shear layer case [4]. The spurious vortices in (e) areeliminated in (f) by increasing the order to N = 16 at �xed resolution (n = 256). Note that aneven number of contours was chosen to avoid the dynamically insigni�cant zero contour.Example 2. The spatial and temporal accuracy of the �ltered SEM is veri�ed by reconsidering theOrr-Sommerfeld problem studied in [7]. The growth rates of a small-amplitude (10�5) Tollmien-Schlichting wave superimposed on plane Poiseuille channel 
ow atRe = 7500 are compared with theresults of linear theory. The errors at time t = 60 given in Table 1 reveal exponential convergence inN for both the �ltered and un�ltered cases. It is also clear that O(�t2) and O(�t3) convergenceis obtained for the �ltered case, but that the un�ltered results are unstable for the third-orderscheme. In this case, the stability provided by the �lter permits the use of higher-order temporalschemes, thereby allowing a larger time step for a given accuracy.4. Analysis and ConclusionWe can understand the stabilizing role of the �lter by considering a time marching approach3



Table 1: Spatial and Temporal Convergence, Orr-Sommerfeld Problem2nd-order 3rd-orderN � = 0:0 � = 0:2 �t � = 0:0 � = 0:2 � = 0:0 � = 0:27 0.23641 0.27450 0.20000 0.12621 0.12621 171.370 0.020669 0.00173 0.11929 0.10000 0.03465 0.03465 0.00267 0.0026811 0.00455 0.01114 0.05000 0.00910 0.00911 161.134 0.0004013 0.00004 0.00074 0.02500 0.00238 0.00238 1.04463 0.00012to solving the advection-di�usion equation, ux = �uxx + f , u(0) = u(1) = 0, studied in [5] in thecontext of bubble-stabilized spectral methods. Discretization by SEM/CN-AB3 yieldsH~u = HRun +C(2312un � 1612un�1 + 512un�2) + Bf ; un+1 = F�~u ; (4)where H = (�2A+ 1�tB) and HR = (��2A + 1�tB) are discrete Helmholtz operators and C is theconvection operator. The �xed point of (4) satis�es���A+C +H(F�1� � I)� u = Bf : (5)The �t dependence in (5) can be eliminated by assuming that 1 ' CFL := �t=�x ' �tN2.For any Galerkin formulation, C is skew symmetric and therefore singular if the number ofvariables is odd. The eigenvalues of (F�1� � I) are f0; 0; : : : ; 0; �1��g, and the stabilizing term,H(F�1� � I), prevents (5) from blowing up as � �! 0 by suppressing the unstable mode. It isreadily shown that the suppressed mode is�N (x) := 2N � 1N (N � 1)(1� x2)P 0N�1(x) = PN (x) � PN�2(x);which corresponds to a single element in the basis suggested in [3]. One can easily suppress moreelements in this basis in order to construct smoother �lters as suggested, for example, in [3, 6, 8].However, our early experiences indicate that a slight suppression of just the N th mode is su�cientto stabilize the lPN � lPN�2 method at moderate to high Reynolds numbers.AcknowledgmentsThis work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Departmentof Energy, under Contract W-31-109-Eng-38. The work of Dr. Mullen was supported underAFSOR Grant number F49620-99-1-0077.References[1] J. B. Bell, P. Collela, and H. M. Glaz, \A second-order projection method for the incompressibleNavier-Stokes equations," J. Comp. Phys., 85, pp. 257{283 (1989).[2] C. Bernardi and Y. Maday, \A collocation method over staggered grids for the Stokes problem," Int.J. Numer. Meth. Fluids, 8 pp. 537-557 (1988).[3] J. P. Boyd, \Two comments on �ltering for Chebyshev and Legendre spectral and spectral elementmethods," J. Comp. Phys., 143, pp. 283{288 (1998).[4] D. L. Brown and M. L. Minion, \Performance of under-resolved two-dimensional incompressible 
owsimulations," J. Comp. Phys., 122, pp. 165{183 (1995).4
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